

2 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Testing mobile apps — whether they’re native, hybrid, or web

— requires a solid strategy. The mobile landscape continuously

evolves. It is complicated and inconsistent in its behavior, especially

when tested together with other activities on the device. While

the mobile ecosystem consists of two major platforms — iOS and

Android — each platform is quite different, fragmented, and they

each require a different testing process.

Developers and testers have to choose between two target

platforms to test against upon each phase of their development

life cycle: virtual platforms and real platforms. Compiling all testing

types, including unit testing, integration testing, functional and

non functional testing, production monitoring testing, and API

testing into a single strategy based on proper considerations is

a great challenge.

In this eBook, we will outline the key differences between the two

types of platforms and provide a recommended practice around

when and how to use each of them for a maximum test coverage

objective that eliminates risks for escaped defects.

Introduction

https://www.perfecto.io/
https://www.perfecto.io/blog/what-is-non-functional-testing

3 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

A virtual platform for the Android OS is called an emulator, while for

iOS it’s called a simulator. An Android emulator, as well as an iOS

simulator, is a software tool that can emulate or run its respective

operating system on your desktop or laptop machine to enable

development and testing activities. Most of these virtual platforms

are embedded within the core IDEs (Independent Development

Environment), like Google’s Android Studio and Apple XCode.

Developers can use these platforms to deploy their apps in early

development stages, and even advanced stages, to understand

how they behave and what they look like. They can also be used

to perform extensive debugging from local machines. While this

is a powerful, free, and easy solution to get started with, it is not a

complete offering for the entire development lifecycle. In the next

section, we will highlight some of the material differences between

virtual platforms and real devices.

Apple’s iOS SimulatorAndroid Virtual Device (AVD) Executed Within the Android Studio IDE

https://developer.android.com/studio/run/emulator
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html

4 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Capability Android Emulator iOS Simulator Comments

App Store Testing Supporting non NDK apps Unsupported

Testing Target (AUT) .APK file .APP file

Sensors Support (GPS, mic, etc) Camera requires instrumentation No face recognition support

Mimic Real Device HW Partially Partially

How to Access It
Basic emulators are part of Android
SDK/Android Studio. Perfecto
supports Android emulators.

Apple XCode environment supports
iOS simulators. Perfecto supports
iOS simulators.

Platform Testing Stability PC/Server maintenance PC/Server maintenance As opposed to mobile device updates

App Store Installations Supported (only non NDK apps) Unsupported

Push/System Notifications Supported Unsupported

Performance Metrics Unsupported Unsupported Virtual platforms don’t reflect real device UX timers

MDM Support Unsupported Unsupported Can’t install MDM on virtual platforms

Calls/SMS/2FA Very limited (via screen mock) Unsupported

Security NA APP file – used on any simulators

Non-Native Browser Support Unsupported Unsupported

Background Apps Support Doesn’t reflect same processes due
to different architecture.

Doesn’t reflect same processes due
to different architecture.

Device Settings Supported Unsupported

End User OS Version Testing Basic image, no device OEM OS Supported

DIFFERENCES BETWEEN IOS AND ANDROID VIRTUAL PLATFORMS

5 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Contents

Part 1: Virtual Platforms vs. Real Devices 6
Operating Systems ... 7

Functionality Support ... 8

Environment Conditions ... 9

Testing Objectives .. 10

Cost .. 10

Summing Up Differences Between Real & Virtual Devices 11

Part 2: Testing Strategy Recommendations 12

Part 3: Test Automation ..16
Appium ... 16

Summary ...17

6 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Using a virtual platform for Android or iOS development and

testing from the local IDE is a powerful solution. However, it cannot

fulfil all of the mobile app testing and development requirements.

If we examine the two mobile OS platforms through their

fragmentation, this alone shows a large scale of possible

permutations with over 6 Android OS families and 3-4 iOS

families that need to be considered for testing.

The two mobile OS platforms are distributed differently across

different geographies. This means that in some countries, users

leverage more and different Android smartphones than iOS

devices, and vice versa — a fact that needs to be considered

in the test coverage strategy.

To understand more on the core differences of the platforms,

here is a high-level distinction between them.

Part 1: Virtual Platforms vs. Real Devices — A Comparison

ANDROID OS MARKET SHARE

Android 6.x (Marshmallow) Android 7.x (Nougat) Android 8.x (Oreo)

Android 9 (Pie) Android 10 (Q)

https://www.perfecto.io/products/perfecto-mobile/mobile-app-testing
https://developer.android.com/about/dashboards
https://developer.apple.com/support/app-store/
https://www.perfecto.io/resources/mobile-web-test-coverage-index

7 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Device Model Custom OS Implementation Versions Base Stock OS

Samsung Galaxy S20 Ultra One UI 2 Android 10

Samsung Galaxy S7 TouchWiz UI Android 8.0

Samsung S8 One UI Android 9.0

Samsung Note 9 One UI 2 Android 10.0

Google Pixel 4 XL STOCK Android 10

Huawei Mate 20 Pro EMUI 9.1 Android 9.0

LG G8 Thin Q LG UX 9.0 Android 10.0

Oppo Reno 5G Color OS 6 Android 10

Huawei Y9 Prime Magic UI 2.1 Android 10

OPERATING SYSTEMS

It is a fact that the OS versions that are installed on an Android

AVD and on real Android devices are different. Teams should

realize the differences between the Android stock OS versions that

run on AVDs and real Google Pixel devices versus the OS versions

that are deployed on other real devices. Each device vendor (OEM)

modifies the stock OS version and builds a unique flavor of it to

run on its devices.

The table below shows a simple comparison between the custom

OS versions that run on various Samsung, Huawei, LG, and Oppo

devices and the one that runs on the Google Pixel device.

In addition to the OS version, developers and testers ought to know

that the hardware configuration that is used on virtual devices is, in

most cases, irrelevant and unrepresentative of what is running on

Android or iOS devices. An Android generated AVD uses the PC/

laptop resources with a non-realistic simulation of memory and

battery compared to a Samsung S20 Snapdragon 865 chipset or

an iOS A13 bionic chipset.

When you create an app, it is perfectly fine to use a few virtual

device platforms for designing it and performing basic testing.

Beyond this, however, it needs to be clear that the outcomes of

testing on virtual vs. real devices are different by definition.

https://developer.android.com/studio/run/emulator-comparison

8 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

FUNCTIONALITY SUPPORT

In addition to OS differences, there are functionalities that cannot

be tested on virtual devices, only on real devices. Among these

are, for example, unique popup notifications, MDM (Mobile Device

Management) system integration, security-related features, such

as 2FA (two-factor authentication), real cellular network behavior,

and more.

Because each app is designed to work on real devices, where a lot

of real-life events take place, it is critical to validate the app under

conditions that are as close to the production environment as

possible. Features such as brightness and background color of the

device display or GPU abilities are unique to real devices.

Virtual platforms support biometrics simulation (fingerprint and

face ID). However, they cannot cover all the different types of real

user options. Sending a pass/fail command to the virtual platform

is one thing, but ensuring that two different human faces can log in

to an app is something else. Performance of an app measured on

a real device is far more accurate than what can be logged on an

AVD/simulator.

For example, on iOS simulators, users cannot change device

settings and see the impact on the app under test. While Android

AVDs allow the configuration of some settings, on iOS, this is a real-

device-only capability. Also, testing your app alongside production

app store applications is quite limited across Android and iOS. For

iOS, it is not supported at all on virtual platforms. For Android, it

can be done through a Google Play extension for non-NDK apps.

Another important functional aspect is the application under

test. Specifically for iOS, the app that is being tested on the

simulator (iPhone/iPad) is of a different type (.app) compared to

a real device app under test (.ipa). This means that the package

that is being deployed and tested across the two types of platforms

is 100% different.

As mentioned above, integrating virtual devices with an

enterprise MDM system is unsupported. Therefore, if the testing

of the app goes through the organizational MDM system, this

will be a problem.

At the screen and UI layer, having the ability to test on real devices

across multiple screen sizes, resolutions, and “skins” is by far

more flexible and advanced than what Android and iOS virtual

platforms can offer.

https://developer.android.com/ndk

9 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Lastly, testing apps on virtual devices vs. real devices can pose

security threats. An iOS .app file that is targeted to simulators can

be installed outside of the organization without being signed,

while an .ipa app requires a signature prior to being installed on

specific devices (pre-production).

There are also browser-related differences, for example,

regarding localization and interruptions between native OS

devices and virtual platforms. However, the above examples

provide a great representation of some functional differences

between the two platforms.

ENVIRONMENT CONDITIONS

Mobile apps are developed to be consumed by real end users that

carry real devices, not virtual, and as such, apps are required to

be fully tested against real end-user conditions. Such environment

conditions consist of real cellular network connectivity, background

production apps running on the device, and interference with app

functionality, as well as real system notifications like push, security,

and others.

Hardware constraints — such as battery, memory, sensor

connectivity (Bluetooth, GPS, etc.) — and sensors — such as

accelerometers, gyroscopes, or proximity sensors — are additional

aspects of a real device environment setup.

In the below image, a real device running a location-based

application (Waze) is shown with a full list of activities happening

in the background — this image by itself can be considered a

representation of a real-device testing environment:

• Apps running in the background.

• Apps pushing notifications to the users.

• Real cellular network conditions.

• Location services on.

• Battery not fully charged.

• Competition on resources

from various apps.

https://www.perfecto.io/feature-page-real-user-simulation

10 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

TESTING OBJECTIVES

It is essential to understand the roles of each platform type within

the entire DevOps lifecycle. Early in the development cycle, a virtual

platform is perfect and provides solid logging and debugging

capabilities to the developer. But as the development progresses,

the testing scope and requirements from both developers and

testers grow and require more advanced abilities that exist only

on real devices.

In addition, a test engineer is typically tasked with more rigorous

and advanced testing types and activities than a developer. Unit

and API testing can be done within or outside CI (continuous

integration), while functional and non functional E2E testing is

usually under the responsibility of the testing team.

Finally, a Go/No-Go release decision can only happen after a solid

testing cycle was performed on real devices and configured against

real environment conditions.

COST

Any IT team looks at the overall costs of development and testing

activities continuously. Android AVD emulators and iOS simulators

are completely free and embedded within the IDEs — that’s a given.

On the other hand, real devices come with a cost to purchase,

maintain, and manage.

The key to a successful and cost-effective strategy that includes

both platforms relies on proper balance and sizing throughout all

types of dev and test activities. As mentioned above, developers

have unique and different use cases as well as objectives compared

to test engineers — this needs to be considered and reflected in the

scoping of the two types of platforms.

Later in this eBook, we will provide a recommended practice that

looks at the test pyramid and ongoing activities and provides a

prescriptive approach for when and how to use both platforms.

11 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

In summarizing the differences between real devices and

virtual platforms, it becomes clear that by nature, both serve

different development and testing needs and are required in

complementary phases of the development cycle. Real users

report real defects on real devices, not on virtual ones; hence,

it is essential that organizations properly balance the usage of

virtual and real devices.

Many apps, throughout the App Store and across market

segments (media, travel, financial, eCommerce, etc.), constantly

reveal defects, bug fixes, and performance improvements that

could have been eliminated in the first place through proper

testing against the right mix of platforms.

Next, we’ll walk through a mobile app testing strategy that

combines both real and virtual devices.

The images to the right serve as real life example and a

representation of defects that were reported on real devices both

from a visual perspective as well as device-specific functionality.

Uber Eats and Uber Ride Share Application Issues on Real Devices

Both issues could have been observed prior to the application

release into the App Store. And they could have easily been avoided.

SUMMING UP DIFFERENCES BETWEEN REAL & VIRTUAL DEVICES

12 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Part 2: Testing Strategy Recommendations for Virtual & Real Devices

Regardless of the testing methodology that your organization

follows, whether it is Agile, BDD, TDD, or something else, the

testing coverage needs to be solid and adhere to product

requirements, end-user conditions, and target geographies.

In addition, the coverage must meet the different phases of

the development lifecycle.

In the below table, we have gathered as an example the different

platform considerations per major DevOps pipeline stages. Early in

the feature development cycle, when development happens on a

local machine, using a small subset of platforms that are virtual can

be sufficient and provide the necessary feedback and debugging/

log information.

Android developers can build Android .apk files and execute

their Espresso or Appium tests on Perfecto’s emulators and other

Android AVDs. Similarly, iOS developers build their target .app

files and run them against simulators in the Perfecto cloud or local

XCode simulators to obtain fast feedback.

Test
Platform

Trigger

Environment

Unit Testing P1

1 iOS (device/simulator)
2 Android (device/emulator)

2 Desktop Browsers

Dev Workstation

Per-commit Post-commit

Build Acceptance
Test P1 + P2

Essential (Top 10)
Mobile & Web

Platforms

Scheduled
Daily

Continuous Integration Server

Acceptance Test
Regression & Non-Functional

Enhanced/Extended
Coverage (Top 25-32

Platforms)

Scheduled
Nightly

Production
P3

2 iOS
2 Android

2-4 Browsers

Scheduled
Hourly

P
LA

TF
O

R
M

 C
O

V
ER

A
G

E

Production

13 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

As the app matures and requires more integration, functional, and

non functional testing as part of the CI phase, use real devices.

In this phase, configuring CI or other data providers (TestNG, etc.)

against the Perfecto cloud will allow you to scale up testing and

obtain feedback on the actual .ipa/.apk builds.

Close to the release phase, and as part of the acceptance testing,

adding additional real device/OS configurations that match the

client usage analytics and market trends is advised.

Below is a visualization of the famous testing pyramid that captures

most types of testing based on the phases in the lifecycle, with a

recommended type of platform for each.

In many organizations, there are exceptions to the testing models.

When time is short to deliver feedback on a large amount of pull

requests (PRs) and code changes, it forces QA engineers and

developers to scale, mix, and size their labs differently to prevent

escaped defects to production and cope with the amount of

product changes that are happening.

In light of this, teams may find themselves creatively resizing their

lab with more or less real/virtual devices in various stages and at

peak times within the development life cycle.

Bringing the above-mentioned strategy into reality, below is

 a real-life product release train flow that iterates software testing

a few times a day, triggering validations upon

code changes, during lunch breaks, and on a

daily basis.

Such a workflow balances the use of both real and

virtual platforms and provides appropriate fast

feedback upon each code change several times

a day. This is a highly-recommended model to

follow and scale or size your testing environment

and lab accordingly.

https://www.perfecto.io/resources/types-of-testing

14 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Master

Develop

Dev/major

Hotfix/ bug

Release cut every Thursday

Release/ exp 1 Release/ exp 2 Release/ Major

Within a day Within a day Within a day

1 hour
feedback

Daily
 sy

nc/ m
erg

e

10 min
feedback

Pull request

Smoke – on every pull request (up to 7 concurrent PR a day)
Noon build – feedback before 1 pm
Regression – extend overnight regresstion to cover top 80%
platforms on real device

Test
Scenarios

Platforms

Environment
Conditions

Functional | API | Performance

Devices & Browsers Permutations

Network, Locations,
Apps, Sensors, Interrupts

Test
Scenarios

Platforms

Environment
Conditions

Functional | API | Performance

Devices & Browsers Permutations

Network, Locations,
Apps, Sensors, Interrupts

Test
Scenarios

Platforms

Environment
Conditions

Functional | API | Performance

Devices & Browsers Permutations

Network, Locations,
Apps, Sensors, Interrupts

Test
Scenarios

Platforms

Environment
Conditions

Functional | API | Performance

Devices & Browsers Permutations

Network, Locations,
Apps, Sensors, Interrupts

Test
Scenarios

Platforms

Environment
Conditions

Test
Scenarios

Platforms

Environment
Conditions

Test
Scenarios

Platforms

Environment
Conditions

Test
Scenarios

Platforms

Environment
Conditions

Test
Scenarios

Platforms

Environment
Conditions

Test
Scenarios

Platforms

Environment
Conditions

Scaling a lab and sizing it based on the above workflow depends

on the availability of the following parameters:

1. Number of test scenarios per each type of test cycle.

2. Average test scenario duration.

3. Number of of target platforms required.

Based on these factors and the time windows that are given

(e.g., 1 hour for noon build testing), parallel testing can be

planned to fit this constraint.

15 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Location Smartphone Tablet Network Conditions Orientation Background Apps

Georgia New York iPhone 11 Pro Max iPad Pro 11’’ 5G & Wi-Fi Vertical + Horizontal

Ross Florida Samsung Galaxy S7 X Average 4G LTE Vertical

Peter UK Huawei P30 Pro X Poor 4G LTE Vertical

Sam Chicago Samsung Galaxy Note 10 Samsung Galaxy Tab S5E Average 3G & Wi-Fi Vertical + Horizontal

Sara California Google Pixel 3A X Poor 5G & Wi-Fi Vertical

The defect above is an example taken from a react-native mobile application, that works fine on Android emulators, real Google Pixel and

Samsung devices, however, when being installed and ran on OnePlus 7T or Oppo devices, text is getting cut from the app screens - This is a

great example to why the mix of platforms is key for defects and quality risks mitigation.

All of the above testing must also consider the real user conditions. Above is an illustration of various personas that can serve as testing

environments for your mobile apps, mostly focusing on real device testing.

16 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

Part 3: Test Automation on Virtual Platforms & Real Devices

In most cases, test automation does not differ much across

platforms. Most platforms support common test automation

frameworks. Appium can be used across iOS and Android.

Espresso can be used on Android emulators and real devices.

And XCUITest can be used on iOS simulators and real devices.

The key differences between automation testing on real devices

vs. virtual ones are the environment settings, capabilities, and

extended test automation scenarios.

Below is a focused example of an Appium test automation

framework that can be used to create and execute test automation

artifacts agaist both virtual and real devices.

APPIUM

Appium is the de-facto cross platform test automation framework

for testing native and hybrid iOS and Android apps. When testing

on virtual platforms with Perfecto, clients should specify a unqiue

command in the desired capabilities code block to pick a virtual

platform, rather than a real device.

Below is the specific command for a virtual iOS iPhone 11 Pro

simulator with the “useVirtualDevice” option set to true.

capabilities.setCapability(“deviceName”, “iPhone 11 Pro”);

capabilities.setCapability(“automationName”, “Appium”);

capabilities.setCapability(“useVirtualDevice”, true);

Without specifying this option when running the test on the

Perfecto cloud through Appium, the default will be to run the

test against a real iOS device.

As mentioned above, and specific to iOS, testing on a virtual

platform requires an .app file, while running the test on a real

device requires an .ipa file. All other configurations and the test

code are the same.

To learn more on Perfecto’s support for virtual devices,

required configurations, and more, please refer to the Perfecto

documentation portal.

https://developers.perfectomobile.com/display/PD/Virtual+mobile+devices+%7C+Early+Access
https://www.perfecto.io/integrations
https://developers.perfectomobile.com/display/PD/Virtual+mobile+devices+%7C+Early+Access
https://developers.perfectomobile.com/display/PD/Virtual+mobile+devices+%7C+Early+Access

17 | www.perfecto.io Perfecto by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0620KS20)

The mix of virtual and real devices is not an option, but rather it

is a reality and a recommended best practice. The balancing act

between using the two types of platforms is what needs to be

stratigically considered.

As highlighted in this eBook, each platform brings unique benefits

and values, and each platform can be used at a varying scale per

each code change, phase in the development lifecycle, and other

product objectives.

At the end of each testing activity per software iteration, the goal is

to continuously bring value to the end users without compromising

quality. Mixing the two serves the goal of fast feedback, high

quality, and cost-effective continuous delivery of mobile apps.

Summary RELATED RESOURCES

• Mobile & Web Test Coverage Index

• The 2020 State of Test Automation

• The Buyer’s Guide to Web & Mobile Test Automation Tools

• Testing Apps on a Simulator vs. Emulator

• Mobile Testing With Real Devices vs. Emulators vs. Simulators

• Emulation vs. Simulation

https://www.perfecto.io/resources/mobile-web-test-coverage-index
https://www.perfecto.io/resources/state-test-automation
https://www.perfecto.io/resources/buyers-guide-testing-automation-tools
https://www.perfecto.io/blog/simulator-vs-emulator
https://www.perfecto.io/blog/real-devices-vs-emulators-vs-simulators
https://www.perfecto.io/blog/emulation-vs-simulation

Perfecto by Perforce enables exceptional digital experiences and

helps you strengthen every interaction with a quality-first approach

for web and mobile apps through a cloud-based test platform.

The cloud is comprised of real devices, emulators, and simulators,

along with real end-user conditions, giving you the truest test

environment available.

Our customers, including 50 percent of the Fortune 500

companies across banking, insurance, retail, telecommunications,

and media rely on Perfecto to deliver optimal mobile app

functionality and end-user experiences, ensuring their brand’s

reputation, establishing loyal customers, and continually attracting

new users. For more information about Perfecto, visit perfecto.io.

About Perfecto

TRY PERFECTO

http://perfecto.io
https://www.perfecto.io/free-trial

